If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4.9t^2+90t+150=0
a = -4.9; b = 90; c = +150;
Δ = b2-4ac
Δ = 902-4·(-4.9)·150
Δ = 11040
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{11040}=\sqrt{16*690}=\sqrt{16}*\sqrt{690}=4\sqrt{690}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-4\sqrt{690}}{2*-4.9}=\frac{-90-4\sqrt{690}}{-9.8} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+4\sqrt{690}}{2*-4.9}=\frac{-90+4\sqrt{690}}{-9.8} $
| 1/5(3x+4)=2 | | 35+2(x+7)=5x-24 | | 0.25x^2+2x+4=4 | | 3.3=10x | | 2.2=10x | | 10=-11+3x | | 2(3x+4)+2=4=3x | | 1-2/3(c+1)=1/4(c-5) | | 17(9−x)−50=52. | | 7-2(10x)+1=25 | | 4(12w-67)=3(9-3w) | | 3x–9=x+5 | | 4y=y-8 | | 4x+3=x–12 | | 3n-9=12(n-3) | | 6x=-160+8x | | 1.5^x=25 | | 2+100x=1.4+200x | | 3n=9=12(n-3) | | X/4=10-x/6 | | X/4=10-x/4 | | 56*64+x=128x | | 1.8x+2.3x+2.1x=1.4x+1.3+3.3x+1.4x | | 4(12w-67=3(9-3w) | | (4×x)+3=59 | | 6n-5=41 | | (19x-4)-6(3x+2)=-3 | | 0.10(x+5)+0.25x=74 | | 0.10(x+5)+0.25x=74.35 | | 30+3x+40+2x=200 | | 4x+12=5x+17 | | x-0.05x=12000 |